01/09/2019

Le gouvernement doit cesser de négliger le rôle des plans d'eau, biefs et zones humides

Le gouvernement réfléchit aujourd'hui aux réponses à apporter aux sécheresses futures. La création d'une soixantaine de retenues agricoles à fin d'irrigation a été annoncée. Mais avant de créer des retenues nouvelles, il conviendrait déjà de s'intéresser à celles qui existent. Et d'arrêter leur destruction. Les zones humides naturelles comme artificielles ont de l'intérêt pour l'adaptation au changement hydro-climatique. Dans la phase de préparation d'une expertise sur l'effet cumulé de ces retenues, l'Irstea et l'Onema (aujourd'hui OFB) avaient analysé le rôle des petites zones humides de type mares, lacs et étangs. Nous publions les extraits de ce chapitre, suivis de quelques commentaires sur les changements attendus dans les politiques de l'eau et des rivières. 



Extraits de l'expertise Irstea-Onema 2015

Les zones humides, mares et étangs : des modèles pour évaluer l’impact cumulé des retenues ?
"Il est reconnu depuis longtemps que les patrons spatiaux jouent un rôle important sur l’hydrologie, la physico-chimie et l’écologie des milieux lentiques. A contrario, il existe à l’heure actuelle peu d’éléments concernant les impacts cumulés des retenues. Dans la mesure où les milieux lentiques sont «des objets hydroécologiques» présentant des analogies avec les retenues, le paragraphe qui suit présente un bref point bibliographique sur le thème de l’effet cumulé des zones humides sur la qualité des eaux, pour faire ressortir les mécanismes et les métriques envisagées pour les décrire, et permettre d’alimenter la réflexion.

3.a Définitions et éléments d’analogie avec les réservoirs des retenues
La plupart des retenues de petite taille incluses dans cette expertise (d’une profondeur inférieure à 8 m pour fixer les idées) correspondent à des mares ou étangs d’origine anthropique. Même s’il n’y a pas de consensus universel sur la définition des mares et étangs (ponds) dans le monde scientifique, ils se définissent le plus souvent comme des étendues d’eau auxquelles il manque la zone aphotique (sans lumière) des lacs ou de petites étendues d’eau d’origine naturelle ou humaine, d’une superficie comprise entre 1m2 et quelques hectares, d’une profondeur comprise entre quelques centimètres et plusieurs mètres, avec une présence d’eau permanente ou temporaire. En France, ils sont estimés à un million de mares et étangs d’une surface de moins de 0.5 hectare.

Selon la convention de Ramsar, les zones humides sont définies comme «une portion du territoire, naturelle ou artificielle, caractérisée par la présence de l'eau». Cette définition inclut également les cours d’eau et les eaux souterraines.

En France, on appelle ces zones humides au sens large «milieux humides» et on définit la zone humide comme des «terrains, exploités ou non, habituellement inondés ou gorgés d'eau douce, salée ou saumâtre de façon permanente ou temporaire; la végétation, quand elle existe, y est dominée par des plantes hygrophiles pendant au moins une partie de l'année» (Art. L.211-1 du Code de l’Environnement). Cette définition exclut les cours d’eau, mais inclut les mares, étangs, tourbières.

Les zones humides sont donc des écosystèmes se développant sur des sols saturés en eau pendant des périodes prolongées et présentant en conséquence une végétation spécifique et adaptée. Elles se caractérisent par une accumulation d’eau au moins périodique, une accumulation de matières organiques et des conditions réductrices plus ou moins intenses dont il résulte des propriétés biogéochimiques spécifiques (transformation de spéciations, couplage de flux, émission de GES, etc...). Les processus sous-jacents sont bien spécifiques et documentés, le plus célèbre étant la dénitrification.

Les zones humides sont alimentées en eau par la pluie, par des écoulements de surface, par l’affleurement de la nappe, par le cours d’eau voisin, ou par un mélange de ces sources. Certaines zones humides, dites ripariennes, sont en continuité avec la rivière ou une autre masse d’eau (fleuve, lac, mer) et des échanges latéraux s’y produisent : selon les périodes, déversement dans la masse d’eau ou alimentation par celle-ci. D’autres sont «endoréiques». Les zones humides constituent donc dans un bassin versant donné, un ensemble de milieux hydroécologiques, à fortes variabilité de rapports avec le réseau hydrographique (autant pour les entrées que pour les sorties). La variabilité s’exprime aussi pour leur géométrie (taille forme..) ou leur organisation dans le paysage. Elles sont parfois organisées en réseau, organisation spatiale hiérarchisée avec divers types de connexions... L’analogie de la typologie hydrologique des zones humides en tête de bassin, esquissée ci-dessus, avec celle des réservoirs peut être relevée.

3.b Rôle des zones humides, mares et étangs.
Ces éléments sont souvent présentés comme des régulateurs hydrologiques, des surfaces hydrologiques ayant un rôle «d’éponge» (on le dit ainsi, à tort ou à raison...), atténuant crues et étiages, et comme des zones tampons susceptibles d’atténuer les charges polluantes.

En ce qui concerne l’impact des zones humides sur le cycle des nutriments et la dynamique de certains polluants, de nombreuses études de cas individuels sont disponibles. Bien qu’une majorité d’études montrent le rôle de « filtre » vis-à-vis de la pollution des eaux et vis-à-vis des matières en suspension, les résultats sont dans le détail très variables, avec de grandes différences d’une zone humide à l’autre, dans les bilans (par exemple dénitrification), voire contradictoires (notamment pour P, qui est soit fixé soit libéré et ce même au sein du même bassin versant. Les facteurs observés de forçage des bilans et donc de l’impact sur la qualité des eaux sont : l’hydrologie (temps de résidence, mode de restitution), les modalités de circulation de l’eau au sein de la zone humide, qui déterminent l’intensité du contact eau–végétation et eau-sols, les «aménagements», les concentrations des flux entrants et leurs effets sur les stocks.

Les mêmes processus spécifiques de base existent dans les diverses zones humides d’un bassin, mais ils se développent avec une très forte variabilité d’intensité d’un milieu à un autre, selon les caractéristiques hydrologiques et la position dans le paysage. C’est cette variabilité plus ou moins hiérarchisée qui rend complexe l’évaluation des effets des zones humides sur les flux cumulés à l’échelle bassin versant. On retrouve là une nouvelle analogie avec la question des réservoirs. Comme pour les réservoirs la question des effets cumulatifs est largement ouverte posée, et peu documentée L’hypothèse d’effets non linéaires ou en cascade est évoquée.

Les mares et étangs, en particulier, sont des écosystèmes peu considérés par la DCE, mais qui abritent de nombreuses espèces patrimoniales sous protection de la Directive Habitats-Faune-Flore et ont une forte valeur écologique. A l’échelle du paysage, mares et étangs sont des habitats exceptionnels vis-à-vis de la biodiversité des eaux douces puisqu’ils contribuent autant que les fleuves ou les lacs au pool régional d’espèces74. Ils jouent un rôle essentiel, d’ailleurs reconnu par l’article 10 de la Directive Habitats, dans l’amélioration de la connectivité entre les habitats d’eau douce en tant que «biotopes-relais» ou «stepping-stone». L’importance de biotopes relais a été démontrée pour de nombreuses espèces dont certaines rares et protégées par la réglementation, comme la libellule Coenagrion mercuriale.

3.c «Patron paysager» et impact des zones humides sur les flux
Si on prend comme exemple l’effet des marais sur les transferts de phosphore, leur effet global, en tant que catégorie de «land cover» est un «effet puits». Cet effet est quantifié, dans le bassin du lac Champlain, à l’aide de modèles empiriques (régressions) reliant flux exportés dans des bassins versants et caractéristiques d’occupation des sols. L’effet semble cependant mieux corrélé pour les marais qui sont connectés aux ordres inférieurs du réseau hydrographique (en l’occurrence ordre 1 à 4 dans l’étude de Weller) que pour les ordres supérieurs. Le type et la position des marais, leur configuration spatiale, sont très souvent cités comme facteurs clés . Le même type de résultats est obtenu dans des sous bassins du lac Léman.

Certaines études prennent comme support la disparition progressive des marais dans un bassin et s’interrogent sur l’effet cumulé de celle-ci. L’étude de Johnston et al. (1990) met en évidence, dans ce contexte, un seuil d’impact hydrologique : pour les bassins ayant moins de 10% de surface de marais il existe une perturbation hydrologique lors des crues. Ces auteurs montrent également qu’il existe une forte corrélation entre la proximité d’un marécage et les paramètres de la qualité des eaux (baisse des NO3 en étiage, baisse de P total, des MES, de NH4 en crue) sur un vaste bassin du Minnesota.

Quelques résultats, notamment ceux relevés par Grimaldi et Dorioz (2014), montrent tout l’intérêt de lier patrons paysagers et effets des zones humides sur les flux hydrochimiques à l’échelle bassin versant.

Les travaux réalisés à l’INRA (UMR SAS Rennes) montrent que l’efficacité sur la réduction des flux de NO3 de zones humides ripariennes, dépend de critères morphologiques comme la concavité ou la convexité du bas de versant, sa pente, le type d’écoulement parallèle ou convergeant; elle dépend aussi de l’ordre des cours d’eau. La dénitrification se développe particulièrement aux frontières, aux interfaces entre le versant et la zone humide. Tout ceci révèle l’importance des formes, des positions dans le paysage des différents compartiments hydrologiques du bassin, des zones humides en particulier.

Autre exemple assez documenté, le pouvoir tampon de zones humides vis-à-vis des transferts de subsurface de phosphore varie avec leur forme, leur taille, leur localisation. Leur effet cumulé à l’échelle du bassin versant dépend alors de caractéristiques globales, telles que la «continuité» des marécages ripariens ou la « sinuosité » du cours d’eau.

Les mares et étangs en particulier jouent également un rôle de puits de carbone, important dans le contexte des changements climatiques. Une étude récente a démontré que les mares et étangs pourraient absorber autant de carbone que les océans à l’échelle mondiale. Leur étude aux Etats-Unis a montré que les étangs et lacs artificiels absorbent plus rapidement le carbone que prévu, jusqu’à 20-50 fois plus rapidement que les arbres. De plus, les mares et étangs absorbent plus rapidement le carbone que les plus grands lacs.

Plusieurs auteurs cités précédemment plébiscitent et de longue date, l’approche paysage (landscape approach) ou la «perspective paysage» comme cadre organisateur de l’étude des effets cumulés. Dans cet objectif les outils de spatialisation type SIG ouvrent des perspectives intéressantes.

3.d Liens entre les populations locales
Ecologiquement, chaque population locale n’est pas totalement déconnectée des populations spatialement proches. Les populations locales sont liées par la dispersion de différentes espèces potentiellement en interaction. La composition des espèces dans un site donné est liée aux interactions entre les conditions biotiques et abiotiques locales et les effets régionaux de la dispersion. Cette théorie a été appliquée dans l’écologie des cours d’eau comme des petits plans d’eau et pourrait permettre de définir un cadre conceptuel des impacts cumulés des retenues. La localisation et le type de retenue a donc vraisemblablement un fort effet sur les communautés. Prendre en compte les paysages et leur biodiversité associée à différentes échelles spatiales pourrait permettre de mieux comprendre les dynamiques et les patterns de population et ainsi l’impact cumulé des retenues."


Nos attentes
Il existe aujourd'hui des dizaines de milliers de retenues en lit mineur, certaines formées d'un simple réservoir plus ou moins grand, profond et complexe (étang, plan d'eau, lac), d'autres produisant des chenaux de dérivation de diverses longueurs (biefs de moulins, canaux d'usines hydro-électriques, canaux d'irrigation gravitaire). Il existe un nombre inconnu d'autres retenues qui ne sont pas construites sur le lit mineur, mais en dérivation de celui-ci, ou encore en contrebas de biefs, en exutoire de fossés, en fond de prairie et de vallée (mares agricoles et d'agrément, étangs d'eaux closes).

Bien que "non naturels", ces milieux partagent certaines fonctionnalités avec des zones humides d'origine non humaine, diversement selon les cas : ralentissement d'écoulement, sédimentation, échanges carbone, azote, phosphore, milieux d'accueil de divers assemblages biologiques, expansion des surfaces d'échange eau-sol-nappe lors des saisons pluvieuses, etc.

A l'heure où se pose la question de l'adaptation au changement climatique, en particulier la gestion des crues et des sécheresses, il est incompréhensible que cette réalité hydrologique massive, présente dans tous nos territoires, soit ignorée des plans de gestion nationaux et par bassins versants. On connaît l'origine de ce retard, ou du moins l'une de ses causes majeures depuis 10 ans: la politique de continuité écologique a été développée en France sous l'angle d'une "renaturation" visant à détruire les aménagements humains, en particulier les retenues et canaux sur lit mineur. Pour justifier cette politique, l'administration en charge de l'eau et de la biodiversité a eu besoin de mettre en avant les seuls défauts de ces ouvrages et de leurs milieux, sans rappeler ni même étudier leurs possibles effets bénéfiques.

Nous souhaitons que dans le cadre de la "politique apaisée de continuité", l'administration engage l'analyse hydrologique, biologique et chimique des bassins versants sans faire l'impasse sur les zones humides, plans d'eau et canaux d'origine humaine. Nous souhaitons également qu'à budget limité, on se penche désormais davantage sur les options de continuité latérale et de recréation de zones humides dans les lits majeurs, ce choix étant associé à des gains de biodiversité et à des recharges en eau des sols comme des nappes.

Source : Irstea-Onema (2015), Rapport préliminaire en vue de l’expertise collective sur l’impact cumulé des retenues, 125 p.

Illustrations : bief d'un moulin ancien du Morvan et ses débordements en saison pluvieuse. De tels milieux, créés par dérivation d'une fraction de l'eau de la rivière, ont des fonctionnalités similaires aux zones humides naturelles et forment des habitats intéressants. Leur effet sur l'hydrologie n'est généralement pas étudié. Cette ignorance doit cesser à l'heure où tous les territoires s'interrogent sur l'avenir de l'eau et de la biodiversité.

Aucun commentaire:

Enregistrer un commentaire